
What are checked and unchecked
exceptions in Java?

Handling exceptions is a vital feature of Java programming, which allows
developers to handle unexpected errors with ease. Java classifies
exceptions into two categories which are: checked exceptions and non-

checked exceptions. Knowing the distinctions between the two types is

crucial to writing reliable and secure Java code. Java Classes in Pune

1. The following exceptions were checked:

Checked exceptions, sometimes referred to as compile-time errors are the

exceptions that the Java compiler must deal with explicitly. They typically

refer to situations that a properly-trained application must anticipate and
be able to recover from. They are inspected at compile time and the

compiler imposes the programmers to either detect them with try-catch

blocks or to declare their existence in the method signature with the

keyword 'throws.

Examples of checked exceptions are:

 Io Exception: Identifies an error that occurs during input-output
functions, for example, writing to or reading from files.

 SQL Exception: Identifies an error that occurs when working using

databases.
 File Not Found Exception: Thrown when attempting to access a file

that does not exist.

 Interrupted Exception: This signifies that a thread has been
interrupted by another thread while it was waiting.

Checked exceptions force developers to deal with potential errors in a
specific manner encourage robust error-handling practices and increase

the reliability of code. When they can handle these exceptions
appropriately developers will be able to recover from mistakes and

provide relevant feedback to users. Java Course in Pune

2. Unchecked Checked exceptions:

Unchecked exceptions, often known as runtime exceptions, don't require

any explicit catch or declared to the programmers. They are typically
caused by unanticipated programming errors or other unexpected
situations that arise in the course of running. Contrary to checked

exceptions, those that aren't checked aren't inspected during compile time,

allowing them to spread through the stack of calls until they are caught or

cause the program to stop abruptly if not dealt with.

Examples of unchecked errors include:

https://www.sevenmentor.com/java-training-classes-in-pune.php
https://www.sevenmentor.com/java-training-classes-in-pune.php

 Null Pointer Exception: Occurs when attempting to access methods
or fields of a null object.

 Array Index Out Of Bounds Exception: Thrown when trying to access

an array element at an invalid index.
 Illegal Argument Exception: Indicates that a method has been

passed an illegal or inappropriate argument.
 Illegal State Exception: This signifies that the state of an object is

not suitable for the operation being performed.

Unchecked exceptions can be due to logical flaws within the program, like
inadequate validation or faulty assumptions about the state of a
program. Although they don't need explicit handling, it's nonetheless

important for programmers to be aware of and avoid these exceptions by

performing thorough testing and verification.

3. Handling Checked and Undoed Exceptions

If dealing with check-out exceptions developers have many ways to handle
them:

 Catching exceptions: Use try-catch blocks to manage exceptions
with grace, and provide alternative routes or errors to users.

 Propagating exceptions: Declare checked exceptions in method
signatures by using the keyword 'throws' to delegate the
responsibility of handling exceptions to the method calling.

 Handling Resources Working with Resources such as network
connections or files make use of try-with-resources statements to

ensure that the proper management of resources is in place and
automated cleaning.

If there are no exceptions checked, and explicit management isn't

necessary, however, developers should be proactive in preventing these
situations whenever they are possible.

 Validate Inputs: Verify inputs from users as well as method

argument arguments to ensure that they satisfy the required
criteria and reduce the risk of encountering runtime errors.

 Defensive Programming: Use defensive programming strategies to

prevent and deal with potential mistakes including boundary

validations and null checks.
 Logging: Make use of log frameworks to store information regarding

unexpected events to aid in troubleshooting as well as trying to

debug. Java Training in Pune

4. Best Practices for Exception Handling:

No matter the kind of error, following the best practices can improve the

durability and reliability for Java code: Java code:

 Be Specific: Find and deal with exceptions at the appropriate
abstraction level and provide specific errors and their context to

assist in troubleshooting.

https://www.sevenmentor.com/java-training-classes-in-pune.php

 Fail fast Take care to identify and address any errors as close to
their source as is feasible, making sure that they do not impact

downstream components, and enhancing the resilience of the system.

 Keep it Simple: Beware of too complex logic for handling exceptions
which can obscure the purpose of the program and cause

maintenance to be difficult.
 Document exceptions: Document the errors that methods could

generate using Javadoc comments, which help other developers
comprehend the expected behavior and possible failure conditions.

 Conduct a thorough test: Write extensive unit tests that cover a

variety of situations and edges including unexpected and expected

variations.

5. Conclusion:

In the end, both checked and unchecked exceptions serve distinct roles in

Java handling exceptions and each serves a distinct function in ensuring

code's durability and reliability. Checked exceptions require explicitly

handled error management, whereas unchecked exceptions are those that
can be triggered by unexpected circumstances that could arise during

running. If you know the distinctions between the two types of exceptions,
and by following the best practices in handling exceptions developers can

develop more durable and reliable Java applications.

Exception handling is an essential component of Java programming. It

allows developers to deal with unexpected errors efficiently and increases
the security and reliability of the codebase they have created. Through
understanding the concept of unchecked and checked exceptions, and
following the most effective techniques for handling exceptions developers

can create more robust and durable Java applications.

